• Directions

Mariotti Research Group

Plasma Science & Nanoscale Engineering

  • Home
  • People
    • Current Group Members
    • Past Group Members
    • Prizes & Awards
  • Research
    • Current Funded Research Projects
    • Past projects
    • Past & Present Sponsors
  • Research Output
    • Journal Papers
    • We will be at … (future conferences)
    • We were at … (past conferences)
  • Facilities
    • Shared Materials Characterization Facilities
    • UU Photoelectron Spectroscopy Facility – UUPS
    • ELM Facility Cluster
    • OVO nanoFactory
    • Photovoltaic & Application Device Characterization
  • Image Galleries
    • Collection 2023
    • Collection 2022
    • Collection 2021
    • Collection 2020
    • Collection 2019
    • Collection 2018
    • Collection 2017
    • Collection 2016
    • Collection 2015
    • Collection 2014
    • Imagine RIT
  • Jobs & PhDs
    • Postdoc in Plasma Processes for Nanomaterials (deadline 28th January 2022)
    • PhD in Nanomaterials for Environmental Applications (competition closed)
    • PhD in Metal quantum dots and clusters for energy applications (competition closed)
  • News

Molybdenum metal under plasma-induced non-equilibrium electrochemistry (ACS Cryst Growth Des 19, 2019, 5249)

9th October 2019 by Davide Mariotti

Microplasma-induced non-equlibrium electrochemistry is employed to prepare soluble and crystalline Mo species in a water-deficient and extraneous ionic-salt-free ethanol electrolyte. The anodization of Mo in absolute ethanol is found to produce Mo oxyethoxide in the liquid ethanol phase, along with a small montage of mixed hexagonal and orthorhombic MoO3 crystals. The evolution of Mo species in solid and liquid phases is characterized to study the crystallization of MoO3 crystal and the formation of blue spherical Mo polyoxometalates (POMs) after extended aging (Crystal Growth & Design 19, 2019, 5249).

Filed Under: News

Plasma Science and Technology > Materials Processing and Nanotechnology > Energy and Environment

News and Events

  • Solar-thermal conversion with nano-Oxides (Nano Energy 108 2023 108112)
  • CNT for solar-thermal energy (Nanomaterials 12, 2022, 2705)
  • Plasma direct exsolution (Adv Energy Mater 12, 2022, 2201131)
  • D01 – Plasma Electrochemistry and Catalysis 2
  • Doping … more and better (J Mater Sci 57, 2022, 13314)

Copyright © 2014. All Rights Reserved.
Web design by Llama Digital.

Copyright © 2023 · News Pro Theme on Genesis Framework · WordPress · Log in